Eigenvalue analysis of a cantilever plate

This example, using a simple plate problem, verifies the linear vibration capability for shell elements. The structure in this example is a cantilever plate, half as wide as it is long, with a width to thickness ratio of 100 to 1. The analysis is done with three different meshes; the finer meshes exercise the eigenvalue routines on relatively large models.

The following topics are discussed:

ProductsAbaqus/Standard

Problem description

The properties of the plate are shown in Figure 1. The analyses involve three different meshes: 2 × 4, 5 × 10, and 10 × 20, where the smaller number of elements is used across the width of the plate. The following shell elements are used with each mesh: S3R, S4R5, S8R5, S9R5, STRI65, STRI3, S4R, S4, and S8R. The meshes used with the triangular elements are based on dividing each rectangle into two triangles.

Results and discussion

The series solution developed by Barton (1951) is used by Zienkiewicz (1971) for a study similar to this example. Here a thinner plate is used than the one described by Zienkiewicz (1971), because the theoretical solution is a thin plate solution, and we wish to ensure that element types STRI65, S9R5, S8R5, S4R5, S8R, S4R, and S4 (which include transverse shear strain energy in penalty form) provide comparable results. If the thicker plate was used, the shear flexibility in these elements would cause their predictions to be different from the thin-plate solutions.

The second-order shell elements (S9R5, STRI65, S8R5, and S8R) all give essentially convergent values for the first four frequencies, even with the 2 × 4 mesh. (Here we mean convergence with respect to the number of elements used and base this conclusion on the observation that the frequency values are not changing significantly as the mesh is refined.) S8R shows some reduction in frequency in the fourth mode as the mesh is refined: presumably this is caused by transverse shear flexibility affecting the result. For the first-order elements (S4R5, S4R, S4, S3R, and STRI3) all the meshes give quite good values for the frequencies, except for S3R elements. Due to constant bending strain approximations, S3R elements require a finer mesh for good accuracy, which is evident from the results. For the same number of degrees of freedom the second-order elements give better results for the higher modes than the first-order elements. The mode shapes are shown in Figure 2.

Input files

eigenvalueplate_s3r_coarse.inp

Element type S3R, 2 × 4 mesh.

eigenvalueplate_s3r_fine.inp

Element type S3R, 5 × 10 mesh.

eigenvalueplate_s3r_finer.inp

Element type S3R, 10 × 20 mesh.

eigenvalueplate_s4_coarse.inp

Element type S4, 2 × 4 mesh.

eigenvalueplate_s4_fine.inp

Element type S4, 5 × 10 mesh.

eigenvalueplate_s4_finer.inp

Element type S4, 10 × 20 mesh.

eigenvalueplate_s4r_coarse.inp

Element type S4R, 2 × 4 mesh.

eigenvalueplate_s4r_fine.inp

Element type S4R, 5 × 10 mesh.

eigenvalueplate_s4r_finer.inp

Element type S4R, 10 × 20 mesh.

eigenvalueplate_s4r5_coarse.inp

Element type S4R5, 2 × 4 mesh.

eigenvalueplate_s4r5_fine.inp

Element type S4R5, 5 × 10 mesh.

eigenvalueplate_s4r5_finer.inp

Element type S4R5, 10 × 20 mesh.

eigenvalueplate_s8r_coarse.inp

Element type S8R, 2 × 4 mesh.

eigenvalueplate_s8r_fine.inp

Element type S8R, 5 × 10 mesh.

eigenvalueplate_s8r_finer.inp

Element type S8R, 10 × 20 mesh.

eigenvalueplate_s8r5_coarse.inp

Element type S8R5, 2 × 4 mesh.

eigenvalueplate_s8r5_fine.inp

Element type S8R5, 5 × 10 mesh.

eigenvalueplate_s8r5_finer.inp

Element type S8R5, 10 × 20 mesh.

eigenvalueplate_s9r5_coarse.inp

Element type S9R5, 2 × 4 mesh.

eigenvalueplate_s9r5_fine.inp

Element type S9R5, 5 × 10 mesh.

eigenvalueplate_s9r5_finer.inp

Element type S9R5, 10 × 20 mesh.

eigenvalueplate_stri3_coarse.inp

Element type STRI3, 2 × 4 mesh.

eigenvalueplate_stri3_fine.inp

Element type STRI3, 5 × 10 mesh.

eigenvalueplate_stri3_finer.inp

Element type STRI3, 10 × 20 mesh.

eigenvalueplate_stri65_coarse.inp

Element type STRI65, 2 × 4 mesh.

eigenvalueplate_stri65_fine.inp

Element type STRI65, 5 × 10 mesh.

eigenvalueplate_stri65_finer.inp

Element type STRI65, 10 × 20 mesh.

References

  1. Barton M. V.Vibrations of Rectangular and Shear Plates,” Journal of Applied Mechanics, vol. 18, pp. 129134, 1951.
  2. Zienkiewicz O. C.The Finite Element Method in Engineering Science, McGraw-Hill, London, 1971.

Tables

Table 1. Frequencies of the first four modes, in Hertz.
Mode 1 2 3 4
Series Solution 84.6 363.8 526.6 1187.0
S3R        
2 × 4 (90) 91.5 539.9 653.7 1811.8
5 × 10 (396) 86.8 401.1 549.8 1374.9
10 × 20 (1386) 85.1 367.8 532.1 1210.0
S4        
2 × 4 (90) 84.7 367.5 610.6 1324.1
5 × 10 (396) 84.0 361.9 535.7 1198.9
10 × 20 (1386) 83.9 360.8 525.6 1179.5
S4R        
2 × 4 (90) 84.2 357.2 609.5 1257.5
5 × 10 (396) 83.9 360.4 535.3 1189.7
10 × 20 (1386) 83.8 360.4 525.4 1177.2
S4R5        
2 × 4 (90) 84.2 356.3 609.3 1251.6
5 × 10 (396) 83.9 360.4 535.3 1189.6
10 × 20 (1386) 83.8 360.5 525.4 1177.5
S8R        
2 × 4 (222) 83.8 361.2 525.5 1183.8
5 × 10 (1086) 83.9 360.4 522.5 1172.9
10 × 20 (3966) 83.8 359.7 522.2 1170.9
S8R5        
2 × 4 (270) 83.8 360.6 523.8 1176.6
5 × 10 (1386) 83.8 360.6 522.4 1173.7
10 × 20 (5166) 83.8 360.5 522.2 1173.2
S9R5        
2 × 4 (270) 83.8 360.6 523.8 1176.6
5 × 10 (1386) 83.8 360.6 522.4 1173.7
10 × 20 (5166) 83.8 360.5 522.2 1173.2
STRI3        
2 × 4 (90) 81.6 298.9 473.7 928.2
5 × 10 (396) 83.5 348.2 514.1 1130.0
10 × 20 (1386) 83.7 357.4 520.3 1163.0
STRI65        
2 × 4 (270) 84.1 368.1 524.0 1229.1
5 × 10 (1386) 83.9 360.9 521.8 1175.4
10 × 20 (5166) 83.8 360.5 522.2 1172.9
The grid size specification is followed by the number of degrees of freedom in the model.

Figures

Figure 1. Cantilever plate.

Figure 2. Mode shapes for vibrating cantilever plate.