The interpolation is defined in terms of the element coordinates
g, h, and r
shown in
Figure 1.
Since
Abaqus
is a Lagrangian code for most applications, these are also material
coordinates. They each span a range from 0 to 1 in an element but satisfy the
constraint that g+h≤1
for triangles and wedges and g+h+r≤1
for tetrahedra. The node numbering convention used in
Abaqus
for these elements is also shown in
Figure 1.
Corner nodes are numbered first, and then the midside nodes for second-order
elements. The interpolation functions are as follows.
First-order triangle (3 nodes):
u=(1-g-h)u1+gu2+hu3
Second-order triangle (6 nodes):
u=2(12-g-h)(1-g-h)u1+2g(g-12)u2+2h(h-12)u3+4g(1-g-h)u4+4ghu5+4h(1-g-h)u6
First-order tetrahedron (4 nodes):
u=(1-g-h-r)u1+gu2+hu3+ru4
Second-order tetrahedron (10 nodes):
u=(2(1-g-h-r)-1)(1-g-h-r)u1+(2g-1)gu2+(2h-1)hu3+(2r-1)ru4+4(1-g-h-r)gu5+4ghu6+4(1-g-h-r)hu7+4(1-g-h-r)ru8+4gru9+4hru10
Figure 1. Isoparametric master elements.
First-order wedge (6 nodes):
u=12(1-g-h)(1-r)u1+12g(1-r)u2+12h(1-r)u3+12(1-g-h)(1+r)u4+12g(1+r)u5+12h(1+r)u6
Second-order wedge (15 nodes):
u=12((1-g-h)(2(1-g-h)-1)(1-r)-(1-g-h)(1-r2))u1+12(g(2g-1)(1-r)-g(1-r2))u2+12(h(2h-1)(1-r)-h(1-r2))u3+12((1-g-h)(2(1-g-h)-1)(1+r)-(1-g-h)(1-r2))u4+12(g(2g-1)(1+r)-g(1-r2))u5+12(h(2h-1)(1+r)-h(1-r2))u6+2(1-g-h)g(1-r)u7+2gh(1-r)u8+2h(1-g-h)(1-r)u9+2(1-g-h)g(1+r)u10+2gh(1+r)u11+2h(1-g-h)(1+r)u12+(1-g-h)(1-r2)u13+g(1-r2)u14+h(1-r2)u15
Second-order variable 15–18 node wedge (assuming all 18 nodes are defined):
u=(12((1-g-h)(2(1-g-h)-1)(1-r)-(1-g-h)(1-r2))+14(N16+N18))u1+(12(g(2g-1)(1-r)-g(1-r2))+14(N16+N17))u2+(12(h(2h-1)(1-r)-h(1-r2))+14(N17+N18))u3+(12((1-g-h)(2(1-g-h)-1)(1+r)-(1-g-h)(1-r2))+14(N16+N18))u4+(12(g(2g-1)(1+r)-g(1-r2))+14(N16+N17))u5+(12(h(2h-1)(1+r)-h(1-r2))+14(N17+N18))u6+(2(1-g-h)g(1-r)-12N16)u7+(2gh(1-r)-12N17)u8+(2h(1-g-h)(1-r)-12N18)u9+(2(1-g-h)g(1+r)+12N16)u10+(2gh(1+r)+12N17)u11+(2h(1-g-h)(1+r)+12N18)u12+((1-g-h)(1-r2)-12(N16+N18))u13+(g(1-r2)-12(N16+N17))u14+(h(1-r2)-12(N17+N18))u15++N16u16+N17u17+N18u18,
where
N16=4g(1-g-h)(1-r2)
N17=4gh(1-r2)
N18=4h(1-g-h)(1-r2).